
Budding Trees

Ozan İrsoy
Department of Computer Science

Cornell University

Ithaca, NY 14853-7501, USA

Email: oirsoy@cs.cornell.edu

Olcay Taner Yıldız
Department of Computer Engineering

Işık University

Şile, İstanbul 34980 Turkey

Email: olcaytaner@isikun.edu.tr

Ethem Alpaydın
Department of Computer Engineering

Boğaziçi University

Bebek, İstanbul 34342 Turkey

Email: alpaydin@boun.edu.tr

Abstract—We propose a new decision tree model, named
the budding tree, where a node can be both a leaf and an
internal decision node. Each bud node starts as a leaf node, can
then grow children, but then later on, if necessary, its children
can be pruned. This contrasts with traditional tree construction
algorithms that only grows the tree during the training phase,
and prunes it in a separate pruning phase. We use a soft
tree architecture and show that the tree and its parameters
can be trained using gradient-descent. Our experimental results
on regression, binary classification, and multi-class classification
data sets indicate that our newly proposed model has better
performance than traditional trees in terms of accuracy while
inducing trees of comparable size.

I. INTRODUCTION

A decision tree is a hierarchical structure for supervised
learning tasks, composed of internal decision nodes and ter-
minal label nodes [1]–[3]. Given an input vector (including a
bias term) x = [1, x1, ..., xd]

T , the response at node m has the
following recursive definition:

ym(x) =

⎧⎨
⎩

ρm if m is leaf

yml(x) else if gm(x) > 0

ymr(x) else if gm(x) ≤ 0

(1)

If m is a leaf node, for binary classification, ρm ∈ [0, 1]
is the probabilistic response denoting the probability that the
instance is positive; for regression ρm ∈ R is the numeric
response. If m is not a leaf but an internal node, depending
on the outcome of the test gm(x), we take the left or right
branch, yml and ymr respectively, and continue recursively.

Frequently [2], gm(x) uses only one of the input attributes:

gm(x) = xj + w0

and this is called the univariate tree. The multivariate tree [4],
[5] is a generalization where we define

gm(x) = wTx

hence defining arbitrary oblique splits. The univariate tree is
a special case where wmi = 1 for some i ∈ {1, ..., d} and
wmj = 0 for all j �∈ {0, i}, and as such defines a split that is
orthogonal to the axis xi. If we relax the linearity assumption
on gm(·), we have the multivariate nonlinear tree. If the above
constraints on gm(·) are dependent on the node m itself, then
we have the omnivariate tree [6].

Regardless of the type of the decision node, learning a
tree is a difficult problem [3]. Finding the smallest decision

tree that can classify all the instances in a training set is NP-
hard [7]. That is why, decision tree induction algorithms are
greedy—they do not guarantee finding the smallest decision
tree but they learn in reasonable time.

Basically, a decision tree induction algorithm is composed
of two steps:

1) Growing the tree: Starting from the root, at each node,
given the data reaching that node, we look for the best decision
function gm(x) (univariate or multivariate) that splits the data
into two. If this split leads to an improvement (for example,
in terms of entropy), the split is accepted, the node becomes a
decision node with two children and tree generation continues
at the two children recursively. If the split does not lead to
any improvement, the node is not split further and remains as
a leaf and a proper probability or numeric value is stored in
it.

2) Pruning the tree: Once the tree is grown to its total
length, we check if pruning a subtree, that is, replacing it with
a leaf, leads to improvement over a separate pruning set. We
are basically checking if the tree is overfitting at this stage and
if so, by replacing a subtree with a leaf we are getting rid of
variance.

That is, tree induction is composed of a first phase of
greedily adding subtrees and the second phase of greedily
replacing subtrees with leaves.

Our proposal in this work is to have a tree architecture
where each node, which we call a bud node, can be an internal
node and a leaf at the same time. We allow splitting and
pruning at the same phase in tree learning, instead of having
two separate phases each allowing only one type of change. A
bud starts as a leaf, and if necessary may grow into a decision
node and get children, but always retains its value as a leaf,
and at any stage later on may lose its children and become a
leaf again.

As we will see later, training a budding tree is an incre-
mental process where small changes are done at each step and
in Section II, we discuss the soft decision tree that is better
suited for such small adjustments and as such forms the basis
of the budding tree. In Section III, we discuss the budding tree
model and how it is learned. We give experimental results in
Section IV where we compare the budding tree with various
univariate and multivariate tree models on many regression,
binary, and multi-class classification data sets and we conclude
in Section V.

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.616

3582

