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cMensia Technologies, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.

Abstract

Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability
(electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject’s brain
waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction
of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper
first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with
covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian
geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless,
existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm
for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and
following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real
EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit
online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with
state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve
both the classification accuracy and the information transfer rate in the online and asynchronous setup.
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1. Introduction1

Human-machine interactions without relying on mus-2

cular capabilities is possible with Brain-Computer Inter-3

faces (BCI) [1] They are the focus of a large scientific inter-4

est [2, 3, 4], especially those based on electro-encephalography5

(EEG) [5]. From the large literature based on the BCI6

competition datasets [6, 7, 8], one can identify the two7

most challenging BCI problems: on one hand, the inter-8

individual variability plagues the models and lead to BCI-9

inefficiency effect [9, 10, 11], on the other hand the intra-10

individual changes calls for the development of online al-11

gorithms and adaptive systems following the evolution of12

the subject’s brain waves [12, 13, 14]. To alleviate these13

variations, several signal processing and machine learning14

techniques have been proposed, such as filtering, regular-15

ization or clustering [15, 16] without the emergence of an16

obvious “best candidate” methodology.17

A common vision is shared by all the most successful18

approaches to reduce signal variabilities: they are applied19

on covariance matrices instead of working in the input sig-20

nal space. Common Spatial Pattern (CSP) [17, 18, 19],21
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which is the most known preprocessing technique in 2-class22

BCI, try to maximize the covariance of one class while23

minimizing the covariance of the other. Similarly, Prin-24

cipal Components Analysis (PCA) [6, 7], also applied for25

spatial filtering in BCI, is based on the estimation of co-26

variance matrices. Canonical Correlation Analysis (CCA)27

is another example of a technique relying on covariance28

estimates successfully applied on EEG for spatial filter-29

ing [15, 20]. Covariance matrices are also found in clas-30

sifiers such as the Linear Discriminant Analysis (LDA),31

which is largely used in BCI. In all cases, they are han-32

dled as elements of an Euclidean space. However, being33

Symmetric and Positive-Definite (SPD), covariance matri-34

ces lie on a subset of the Euclidean space, with reduced35

dimensionality and specific properties, the Riemannian36

manifold. Considering covariance matrices in their origi-37

nal space would reduce the search area for an optimization38

problem [21, 22]. As Riemannian manifolds inherently de-39

fine a metric, the distance between SPD matrices takes40

into account the space where they lie on; approximating it41

to an Euclidean space introduce inaccuracies and results42

in ill-conditioned matrices.43

Recently, studies have been done to consider covariance44

matrices obtained from multichannel brain signals in their45
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