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a b s t r a c t 

A new relaxed PSS-like iteration scheme for the nonsymmetric saddle point problem is 

proposed. As a stationary iterative method, the new variant is proved to converge uncon- 

ditionally. When used for preconditioning, the preconditioner differs from the coefficient 

matrix only in the upper-right components. The theoretical analysis shows that the precon- 

ditioned matrix has a well-clustered eigenvalues around (1, 0) with a reasonable choice of 

the relaxation parameter. This sound property is desirable in that the related Krylov sub- 

space method can converge much faster, which is validated by numerical examples. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The steady-state Navier–Stokes system is a basic tool for the modeling of an incompressible Newtonian fluid [30] . Finding 

effective methods for this system remains a crucial issue for a range of engineering applications [25,26] . Let � ⊂ R 

2 (or R 

3 ) 

be a bounded, connected domain with a boundary �. Given a force field f and boundary data g , the problem is to ascertain 

a velocity field u and a pressure field p that satisfy the steady-state Navier–Stokes system [15] 

−ν�u + (u · ∇) u + ∇p = f , in �, 

div u = 0 , in �, (1) 

u = g , on ∂�, 

where ν > 0 is the kinematic viscosity, � is the vector Laplacian, ∇ is the gradient and div is the divergence. The Navier–

Stokes Eq. (1) is nonlinear due to the existence of ( u ·∇) u . Two common strategies, namely Picard iteration and Newton 

iteration, are available for linearizing (1) , which leads to the following Oseen problem 

−ν�u + (ω · ∇) u + ∇p = f , in �, 

div u = 0 , in �, (2) 

u = g , on ∂�, 
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