A new relaxed PSS preconditioner for nonsymmetric saddle point problems ${ }^{\text {h }}$

Ke Zhang ${ }^{\text {a }}$, Ju-Li Zhang ${ }^{\mathrm{b}, \mathrm{c}, *}$, Chuan-Qing Gu ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, PR China
${ }^{\mathrm{b}}$ School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai, 201620, PR China
${ }^{\text {c }}$ Department of Mathematics, Zhejiang A\&'F University, Zhejiang, 311300, PR China
${ }^{\mathrm{d}}$ Department of Mathematics, Shanghai University, Shanghai, 200444, PR China

ARTICLE INFO

MSC:
65 F10
65N22

Keywords:

Saddle point problem
Preconditioning
Krylov subspace method
Navier-Stokes equation
GMRES

Abstract

A new relaxed PSS-like iteration scheme for the nonsymmetric saddle point problem is proposed. As a stationary iterative method, the new variant is proved to converge unconditionally. When used for preconditioning, the preconditioner differs from the coefficient matrix only in the upper-right components. The theoretical analysis shows that the preconditioned matrix has a well-clustered eigenvalues around $(1,0)$ with a reasonable choice of the relaxation parameter. This sound property is desirable in that the related Krylov subspace method can converge much faster, which is validated by numerical examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The steady-state Navier-Stokes system is a basic tool for the modeling of an incompressible Newtonian fluid [30]. Finding effective methods for this system remains a crucial issue for a range of engineering applications [25,26]. Let $\Omega \subset \mathbb{R}^{2}$ (or \mathbb{R}^{3}) be a bounded, connected domain with a boundary Γ. Given a force field \mathbf{f} and boundary data \mathbf{g}, the problem is to ascertain a velocity field \mathbf{u} and a pressure field \mathbf{p} that satisfy the steady-state Navier-Stokes system [15]

$$
\begin{align*}
-v \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla \mathbf{p} & =\mathbf{f}, \\
\operatorname{div} \mathbf{u} & =0, \tag{1}\\
& \text { in } \Omega \\
\mathbf{u} & =\mathbf{g}, \\
& \text { on } \partial \Omega,
\end{align*}
$$

where $v>0$ is the kinematic viscosity, Δ is the vector Laplacian, ∇ is the gradient and div is the divergence. The NavierStokes Eq. (1) is nonlinear due to the existence of $(\mathbf{u} \cdot \nabla) \mathbf{u}$. Two common strategies, namely Picard iteration and Newton iteration, are available for linearizing (1), which leads to the following Oseen problem

$$
\begin{align*}
-v \Delta \mathbf{u}+(\omega \cdot \nabla) \mathbf{u}+\nabla \mathbf{p} & =\mathbf{f}, & & \text { in } \Omega \\
\operatorname{div} \mathbf{u} & =0, & & \text { in } \Omega \tag{2}\\
\mathbf{u} & =\mathbf{g}, & & \text { on } \partial \Omega
\end{align*}
$$

[^0]
[^0]: This work is supported by National Natural Science Foundation (Nos. 11601323, 11371243), Foundation of Zhejiang Educational Committee (Y201431769) and Young Teacher Training Program of Shanghai Municipality (2015).

 * Corresponding author.

 E-mail addresses: xznuzk123@126.com (K. Zhang), xzhzhangjuli@163.com, 354299478@qq.com (J.-L. Zhang).

