
Imperialist competitive algorithm with PROCLUS classifier for service
time optimization in cloud computing service composition

Amin Jula a,⇑, Zalinda Othman a, Elankovan Sundararajan b

a Data Mining and Optimization Research Group, Centre for Artificial Intelligence, UKM Bangi, 43600 Selangor, Malaysia
b Centre of Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600 Selangor, Malaysia

a r t i c l e i n f o

Article history:
Available online 4 August 2014

Keywords:
Cloud computing
Service composition
Service selection
Service time
Quality of service
QoS
Imperialist competition algorithm
Clustering
Proclus

a b s t r a c t

Aiming to provide satisfying and value-added cloud composite services, suppliers put great effort into
providing a large number of service providers. This goal, achieved by providing the ‘‘best’’ solutions, will
not be guaranteed unless an efficient composite service composer is employed to choose an optimal set of
required unique services (with respect to user-defined values for quality of service parameters) from the
large number of provided services in the pool. Facing a wide service pool, user constraints, and a large
number of required unique services in each request, the composer must solve an NP-hard problem. In this
paper, CSSICA is proposed to make advances toward the lowest possible service time of composite ser-
vice; in this approach, the PROCLUS classifier is used to divide cloud service providers into three catego-
ries based on total service time and assign a probability to each provider. An improved imperialist
competitive algorithm is then employed to select more suitable service providers for the required unique
services. Using a large real dataset, experimental and statistical studies are conducted to demonstrate
that the use of clustering improved the results compared to other investigated approaches; thus, CSSICA
should be considered by the composer as an efficient and scalable approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In an era where computation complexity is growing dramati-
cally and achieving desired results depends on the processing of
big data, the computation world has no choice but to recognize
the use of cloud computing (Armbrust et al., 2010; Hayes, 2008).
Choosing each of the deployment models of cloud computing (pub-
lic, community, private, and hybrid clouds (Dillon, Chen, & Chang,
2010; Peter Mell, 2011)) would provide required service models
(Ellinger, 2013) with different security policies (Takabi, Joshi, &
Gail-Joon, 2010; Wei et al., 2014; Zissis & Lekkas, 2012). According
to a widely accepted classification, each service can belong to one
of the three categories: software as a service (SaaS), platform as a
service (PaaS), or infrastructure as a service (IaaS), which can pro-
vide more effective functionalities in cooperation and combination
of other services.

Nevertheless, the increasing tendency of applicants to receive
services from the cloud has led to an unprecedented increase in
the number of providers who want to present their services in a
cloud service pool. Hence, we are faced with a large number of

unique services provided with similar functionality and different
quality of service (QoS) (Jula, Sundararajan, & Othman, 2014).

On the other hand, due to the availability of complicated and
varied services, a distinct simple service is unable to meet the pre-
vailing functional prerequisites for several real-world cases. A set
of simple atomic services that are able to work together is neces-
sary to perform a complicated service. We also encounter hanging
customer requirements from simple services into complicated
services, along with a set of constraints, priorities, and QoS require-
ments (e.g., service time). Therefore, cloud suppliers must provide
a package, referred to here as the composite service composer (CSC),
which is a set of components that searches for the best composi-
tion of pre-provided unique services in the service pool based on
customer requirements and constraints. Because of the immense
variety of unique services and large number of service providers,
as well as the importance of customer-defined requirements and
constraints, CSC is faced with an NP-hard problem referred to as
cloud computing service composition (CCSC) (Fei, Yuanjun, Lida,
& Lin, 2013; Li, Cheng, Ou, & Zhang, 2010; Wada, Suzuki,
Yamano, & Oba, 2012) when seeking the optimal response to any
request for a composite service.

Many studies have been conducted and many different heuris-
tic and non-heuristic algorithms (Barney, 2012; Gutierrez-Garcia &
Sim, 2010; Kofler, Haq, & Schikuta, 2010; Kofler, ul Haq, & Schikuta,

http://dx.doi.org/10.1016/j.eswa.2014.07.043
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: amin.jula@gmail.com, aminjula@ftsm.ukm.my (A. Jula), za-

linda@ftsm.ukm.my (Z. Othman), elan@ftsm.ukm.my (E. Sundararajan).

Expert Systems with Applications 42 (2015) 135–145

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.07.043&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.07.043
mailto:amin.jula@gmail.com
mailto:aminjula@ftsm.ukm.my
mailto:zalinda@ftsm.ukm.my
mailto:zalinda@ftsm.ukm.my
mailto:elan@ftsm.ukm.my
http://dx.doi.org/10.1016/j.eswa.2014.07.043
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

	Imperialist competitive algorithm with PROCLUS classifier for service time optimization in cloud computing service composition
	1 Introduction
	2 Problem and algorithm description
	2.1 Service time optimization in cloud computing service composition (STOCCSC)
	2.2 Imperialist competitive algorithm

	3 Proposed algorithm
	3.1 Missing value replacement and normalization
	3.2 Applying PROCLUS
	3.3 Applying the ICA

	4 Experimental results
	4.1 Experiment setup
	4.2 Discussion
	4.2.1 Comparison of the total service time
	4.2.2 Comparison of the time-consumption percentage (TCP)
	4.2.3 Statistical performance comparison


	5 Conclusion
	References


