Symbols and abbreviations H Gre			
а	Height of a cross-section [mm]	i	[m] Nu
a1	Spacing, parallel to grain, of fasteners within one	k_{cy} or k_{c}	- Ir
	row [mm]	k _m	Fac
a ₂	Spacing, perpendicular to grain, between rows of	m	str
	fasteners [mm]	kmod	Мо
a _{3,c}	Distance between fastener and unloaded end	mou	eff
			cor
a _{3,t}	Distance between fastener and loaded end [mm]	K _{ser}	Slip
a _{4,c}	Distance between fastener and unloaded edge	Ku	Ins
	[mm] Distance between features and loaded edge [mm]		sta
α _{4,t}	Cross sostion of momber i [mm ²]	L	Spa
Ai ^*	Effortive gross section of member i [mm ²]	l_i	Ler
A _i h	Width of a cross-section [mm]	M_d	De
C	Crossover probability	$M_{y,Rk}$	Cha
ct.	Materials and labour costs per fastener for		mr
<i>c</i> aowel+ste	handling assembling drilling and holting	n	Nu
	including the adjoining steel plates $[\notin dowe]^{-1}$	n _{a,i} , n _{e,i}	Nu
cter	Price of the manufactured and embedded timber	Nc	Nu
COCL	per $m^3 \in m^{-3}$]		the
d	Fastener diameter [mm]	N _d	Ax
Е	Elitism percentage to apply	n _{dowel}	Nu
E _{mean}	Mean value of the elastic modulus [N mm ⁻²]	N _{dowels}	Tot
E _{0.05}	Fifth percentile of the elastic modulus [N mm ⁻²]	Ne	Nu
F _{ax.Rk}	Characteristic axial withdrawal capacity of the		eac
,	fastener [N]	n _{ef}	Eff
f _{c.0.d}	Design compressive strength along the grain [N	Np	101
- , , ,	mm ⁻²]	\mathbf{D}	cor
f _{c,0,k}	Characteristic compressive strength [N mm ⁻²]	$P_j(G_j(X))$	Per
F _d	Calculated load at a joint for a row of fasteners [N]	C (m)	acc
f _{h,1,k}	Characteristic embedment strengths in the timber	5(x)	Ma
	members [N mm ⁻²]	ι ₁	Cto
f _{m,k}	Characteristic bending strength [N mm ⁻²]	T(S(v))	Der
f _{m,y,d}	Design bending strength about the principal y-	1 (3(X))	200
	axis [N mm ⁻²]	Var	Tot
f _{m,z,d}	Design bending strength about the principal z-axis	v GL X	Me
	[N mm ⁻²]	α	An
f _{t,0,d}	Design tensile strength along the grain [N mm ⁻²]		fibr
f _{t,0,k}	Characteristic tensile strength [N mm ⁻²]	γ_m	Par
f _{u,k}	Characteristic tensile strength of bolts [N mm ⁻²]	ρ _b	Cha
F _{v,Ed}	Design shear force on the connection [N]	ρ _m	Me
F _{v,ef,Rd}	Effective design load-carrying capacity of one row	$\sigma_{c.0.d}$	Des
	of fasteners parallel to the grain [N]	-,-,-	mn
F _{v,ef,Rk}	Effective characteristic load-carrying capacity of	$\sigma_{m,v,d}$	Des
£	one row of fasteners parallel to the grain $[N]$		[N :
Ju,k	Characteristic shear strength [N mm -]	$\sigma_{m,z,d}$	Des
Γ _{υ,Rk}	plane per device [N]		[N :
F(v)	Modified objective function [6]	$\sigma_{t,0,d}$	Des
f(x)	Objective function [6]	Abbrouid	tion
Foor t	Design snlitting canacity [N]	CA	Cer
- 90,Rd Foo ph	Characteristic splitting capacity [N]	MPCWT	Me
$G_{i}(\mathbf{x})$	Maximum ultimate limit state utilisation ratio in	NLP	No
5)(19	each bar i	SLS	Ser
h	Edge depth (i.e., height at the truss supports) [m]	ULS	Ult
			5.0

Н	Greatest depth of the truss (i.e., midpoint height) [m]		
i	Number of variables studied		
k or k.	_ Instability factor for the v- or z-axes		
ec,y or nec, k	Factor considering redistribution of bending		
-111	stresses in a cross-section		
Rmod	Modification factor, which takes into account the		
·mou	effect of the duration of the load and the moisture		
	content		
Kaar	Slip modulus		
K.,	Instantaneous slip modulus for ultimate limit		
-u	states		
L	Span of the truss [m]		
i	Length of member i [mm]		
M _d	Design bending moment [kN m]		
M _{v.Rk}	Characteristic yield moment of fastener (dowel) [N		
<i>,</i>	mm]		
n	Number of members of the upper chord		
n _{a,i} , n _{e,i}	Numbers of dowels at the member ends		
Nc	Number of individuals who enter to form part of		
	the crossover		
N _d	Axial force [kN]		
n _{dowel}	Number of dowels within one row		
N _{dowels}	Total number of dowels in a truss		
Ne	Number of elite individuals in the population in		
	each generation		
n _{ef}	Effective number of dowels		
Np	Total number of individuals in the population		
	considered		
$P_j(G_j(\mathbf{x}))$	Penalisation of the objective function in		
	accordance with the ultimate limit state [€]		
S(x)	Maximum ultimate limit state utilisation ratio		
1	Timber thickness or penetration depth [mm]		
r_{s}	Steel plate thickness [mm]		
I(S(x))	Penalisation of the objective function in		
7	accordance with the serviceability limit state $[\in]$		
V _{GL}	Momber of the study population		
x	Angle between the direction of the force and the		
ı	fibres		
Vara	Partial safety factor for a material property		
1 m 01.	Characteristic density [kg m^{-3}]		
0 m	Mean density [kg m ⁻³]		
r Tan d	Design compressive stress along the grain [N		
c,0,u	mm^{-2}		
J _{m v d}	Design bending stress about the principal y-axis		
,,,,,	[N mm ⁻²]		
$\tau_{m.z.d}$	Design bending stress about the principal z-axis		
,_,	[N mm ⁻²]		
τ _{t,0,d}	Design tensile stress along the grain [N mm ⁻²]		
Abbreviations			
	Motel plate connected wood trusses		
	Nonlineer programming		
	Serviceability limit state		
	Illimate limit state		
010			