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a b s t r a c t 

Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear 

time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) 

and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrele- 

vant states are obtained by looking for regularities in the transition probabilities. Our approach is based 

on an optimization model. More specifically, we consider two competing objectives that a researcher will 

in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity 

between the original and the resampled series, and assuring a controlled diversification of the latter. A 

discussion based on information theory is developed to define the desirable properties for such optimal 

criteria. Two numerical tests are developed to verify the effectiveness of the proposed method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Bootstrapping and simulation procedures have been applied in- 

tensively to solve a wide variety of problems. Following such a 

widespread interest, several methodological contributions have ap- 

peared to improve the initial bootstrap method advanced by Efron 

(1979) , even if the basic idea remains unchanged (e.g., see the 

methodological discussion on the classical bootstrap methods in 

Freedman, 1984; Freedman & Peters, 1984; Efron & Tibshirani, 

1986; 1993 ). In particular, the heart of the bootstrap consists of 

resampling some given observations to the purpose of obtaining a 

good estimation of statistical properties of the original population. 

An important restriction to the classical bootstrap methods is 

the hypothesis that the observations in the sample are realizations 

of independent and identically distributed random variables. How- 

ever, in the case of time series taken from the real life, this condi- 

tion is hardly true. When such hypothesis is not true, a theoretical 

model for the data is required and the bootstrap is then applied to 

the model errors. 

A new group of bootstrapping methods have been advanced to 

reduce the risk of misspecifying the model. To this group belong 

the so-called block , sieve , and local methods of bootstrapping (see 

Bühlmann, 2002 , for a comparison of these methods). The methods 
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are nonparametric, and assume that observations can be (time) de- 

pendent. 

This category of literature has increased in a relatively recent 

period, and new methods of bootstrapping based on Markov chain 

theory have appeared. The major advantage of this approach is that 

it is entirely data driven, so that it can smoothly capture the de- 

pendence structure of a time series, releasing a researcher from 

the risk of wrongly specifying the model, and from the difficulties 

of estimating its parameters. 

The limitation connected to Markov chains is, of course, that 

they are naturally unsuitable to model continuous-valued pro- 

cesses. This is an unfortunate situation, since several phenomena 

in many areas of research are often modeled through continuous- 

valued processes. In economic and financial literature, there are 

plenty of cases of continuous-valued processes showing complex 

behaviors, where data show non-linear dependence. It is well 

known that in the financial markets, next to technological and or- 

ganizational factors, psychology and emotional contagion introduce 

complex dynamics in driving the expectations on prices (e.g., think 

of the terms popular in the technical analysis such as “psycholog- 

ical thresholds,” “price supports,” “price resistances,” etc.). In such 

cases, the selection of the correct model for complex continuous- 

valued stochastic processes is highly subject to uncertainty. 

To overcome model risk, a researcher in the need of bootstrap- 

ping or simulating a continuous-valued stochastic process could in 

principle resort to partitioning its support, obtaining a discretized 

version of it, and then apply Markov chain bootstrapping or sim- 

ulation techniques to model brilliantly any arbitrary dependence 
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