
Parallel Processing Data Streams in Complex Event Processing Systems
Fuyuan Xiao1, Cheng Zhan1, Hong Lai1, Li Tao1

1. School of Computer and Information Science, Southwest University, Chongqing, 400715, China
E-mail: xiaofuyuan@swu.edu.cn, zhanc@swu.edu.cn, hlai@swu.edu.cn, tli@swu.edu.cn

Abstract: For distributed complex event processing systems, handling high volume and continuous data streams with

high throughput are required for further decision support. Due to the specific properties of pattern operators, it is difficult

to process the data streams in parallel over complex event processing systems. To address the issue, a novel parallel

processing strategy is proposed. The proposed method can keep the complex event processing system working stably

and continuously via the elapsed time. Finally, the utility of our work is demonstrated through the experiments on the

StreamBase system.

Key Words: Data streams, Complex event processing, Parallel processing, Pattern operators, Decision support

1 INTRODUCTION

Nowadays, there has been increasing interest in dis-

tributed applications for decision support which require

processing continuously flowing data from geographically

distributed sources at unpredictable rate to obtain timely re-

sponses to complex queries, such as data stream processing

(DSP) systems [1–6] and complex event processing (CEP)

systems [7–14]. In CEP systems, event streams are pro-

cessed in or near real-time for a variety of purposes, from

wireless sensor networks to financial tickers, from traffic

management to click-stream inspection [15, 16]. In those

application domains, continuous and highly-available event

stream processing with high throughput is critical for deal-

ing with real-world events.

Nevertheless to say, most of these strategies which ex-

clusively focus on aggregate queries or binary equi-joins in

DSP systems cannot be simply and directly used in CEP

systems which focus on multi-relational non-equi-joins on

the time dimension. Whereas, the volume and input rates

of the data would become large as in event stream process-

ing, especially in the big data applications [17, 18]. The

increasing of the input rate of a stream may cause bottle-

necks. Such a behavior gives rise to poor quality of query

results and loses the QoS guarantees of the system.

To address these issues, we propose a parallel processing

strategy which can be used to keep the system running sta-

bly and continuously. Specifically, the CEP system based

on the proposed parallelization architecture can split the in-

put stream into parallel sub-streams to realise a scalable

execution of continuous pattern query over event streams.

The parallel processing strategy can keep the CEP system

This work is supported by Fundamental Research Funds for the Cen-

tral Universities (Nos. XDJK2015C107, SWU115008, XDJK2016C043,

SWU115091) and the Education Teaching Reform Program of Higher

Education (No. 2015JY030). The paper is also partially supported by

A Project Funded by the Priority Academic Program Development of

Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative

Innovation Center on Atmospheric Environment and Equipment Technol-

ogy (CICAEET).

working stably and continuously via the elapsed time. The

utility of our work is substantiated through the experiments

on the StreamBase [19] system.

The rest of this paper is organized as follows. Section 2

briefly introduces the preliminaries of this paper. After that,

a parallel processing strategy is proposed for distributed

complex event processing systems in Section 3. Section 4

demonstrates the utility of our proposal through the exper-

iments on the StreamBase system. Finally, conclusions are

given in Section 5.

2 PRELIMINARIES

In this section, we briefly introduce the basic event

model, nested pattern query language, and the pattern op-

erators based on related studies, e.g., [9–11, 14, 20].

2.1 Event Model
An event which represents an instance and an atomic,

is an occurrence of interest at a point in time. Basically,

events can be classified into primitive events and compos-

ite events. A primitive event instance is pre-defined single

occurrence of interest that cannot be split into any small

events. A composite event instance that occurs over an in-

terval is created by composing primitive events.

Definition 2.1 A primitive event ei is typically modeled
multi-dimensionally denoted as ei=e(ei.t, (ei.st = ei.et),
< a1, . . ., am >), where, for simplicity, we use the sub-
script i attached to a primitive e to denote the timestamp
i, ei.t is event type that describes the essential features of
ei, ei.st is the start time-stamp of ei, ei.et is the end time-
stamp of ei, < a1, . . ., am > are other attributes of ei and
the number of attributes in e(·) denotes the dimensions of
interest.

Definition 2.2 Based on Definition 2.1, a composite event
is denoted as e=e(e.t, ((e.st = min

1≤i≤n
ei.st) < (e.et =

max
1≤i≤n

ei.et)), < a1, . . ., ag >).

6157978-1-5090-4657-7/17/$31.00 c©2017 IEEE

