
Evolutionary Undersampling for Extremely Imbalanced Big Data
Classification under Apache Spark

I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera

Abstract—The classification of datasets with a skewed class
distribution is an important problem in data mining. Evolu-
tionary undersampling of the majority class has proved to be
a successful approach to tackle this issue. Such a challenging
task may become even more difficult when the number of the
majority class examples is very big. In this scenario, the use of
the evolutionary model becomes unpractical due to the memory
and time constrictions. Divide-and-conquer approaches based
on the MapReduce paradigm have already been proposed to
handle this type of problems by dividing data into multiple
subsets. However, in extremely imbalanced cases, these models
may suffer from a lack of density from the minority class in
the subsets considered. Aiming at addressing this problem, in
this contribution we provide a new big data scheme based on
the new emerging technology Apache Spark to tackle highly
imbalanced datasets. We take advantage of its in-memory
operations to diminish the effect of the small sample size. The
key point of this proposal lies in the independent management
of majority and minority class examples, allowing us to keep
a higher number of minority class examples in each subset. In
our experiments, we analyze the proposed model with several
data sets with up to 17 million instances. The results show
the goodness of this evolutionary undersampling model for
extremely imbalanced big data classification.

I. INTRODUCTION

In the recent years, the amount of information that can

be automatically gathered is inexorably growing in multiple

fields such as bioinformatics, social media or physics. Thus,

a new class of data mining techniques that can take advantage

of this voluminous data to extract valuable knowledge is

required. This research topic is being referred under the term:

big data [1]. Big data learning poses a significant challenge

to the research community because standard data mining

models cannot deal with the volume, diversity and complex-

ity that this data brings up [2]. However, the newly arisen

cloud platforms and parallelization technologies provide us

a perfect environment to tackle this issue.

The MapReduce framework [3], and its open-source im-

plementation in Hadoop [4], were the first alternatives to

This work was supported by the Research Projects TIN2011-28488,
TIN2013-40765-P, P10-TIC-6858 and P11-TIC-7765. I. Triguero holds a
BOF postdoctoral fellowship from the Ghent University.

I. Triguero is with the Department of Internal Medicine of the Ghent
University, 9052 Zwijnaarde, Belgium. E-mails: {isaac.triguero@irc.vib-
ugent.be

D. Merino, J. Maillo and F. Herrera are with the Department of Computer
Science and Artificial Intelligence of the University of Granada, CITIC-
UGR, Granada, Spain, 18071. E-mails: dmerino76@gmail.com, {jesusmh,
herrera}@decsai.ugr.es

M. Galar and H. Bustince are with the Department of Automatics and
Computation, Universidad Pública de Navarra, Campus Arrosadı́a s/n, 31006
Pamplona, Spain. E-mails: {mikel.galar, bustince}@unavarra.es

handle data-intensive applications, which rely on a dis-

tributed file system. The development of Hadoop-based data

mining techniques has been widely spread [5], [6], because

of its fault-tolerant mechanism (recommendable for time-

consuming tasks) and its ease of use [7]. Despite its pop-

ularity, researchers have encountered multiple limitations in

Hadoop MapReduce to develop scalable machine learning

tools [8]. Hadoop MapReduce is inefficient for applications

that share data across multiple phases of the algorithms

behind them, including iterative algorithms or interactive

queries. Several platforms have recently emerged to over-

come the issues presented by Hadoop MapReduce [9], [10].

Apache Spark [11] highlights as one of the most flexible and

powerful engines to perform a fast distributed computing in

big data by using in-memory primitives. This platform allows

us to load data into memory and query it repeatedly, making

it very suitable for algorithms that use data iteratively.

The class imbalance problem is challenging when it

appears in data mining tasks such as classification [12].

Focusing on two-class problems, the issue is that the positive

instances are usually outnumbered by the negative ones, even

though the positive one is usually the class of interest [13].

This problem is presented in a wide number of real-world

problems [12]. Furthermore, it comes along with a series of

difficulties such as small sample size, overlapping or small

disjuncts [14]. In this scenario, one focuses on correctly

identifying the positive examples, but affecting the least to

the negative class identification. Various solutions have been

developed to address this problem, which can be divided into

three groups: data sampling, algorithmic modifications and

cost-sensitive solutions. These approaches have been success-

fully combined with ensemble learning algorithms [15].

Evolutionary undersampling (EUS) [16] falls in the cate-

gory of data sampling strategies, where the aim is to balance

the original dataset. In this case, the balancing is done by

undersampling, that is, reducing the number of negative class

examples. Differently from random undersampling where

the focus is to balance the dataset, EUS has a two-fold

objective. 1) To create the balanced dataset; 2) To increase

the overall performance over both classes of the problem. In

order to do so, a supervised balancing procedure is carried

out using a genetic algorithm. Once the dataset is balanced,

any standard classifier can be used to build a model that

should be able to equally distinguish both classes of the

problem. This technique is very powerful when dealing with

standard imbalanced problems, however, when shifting to a

large-scale context it becomes unfeasible since the search

space increases exponentially with the number of instances

640978-1-5090-0623-6/16/$31.00 c©2016 IEEE

