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a b s t r a c t

A previous approach to robust intensity-modulated radiation therapy (IMRT) treatment planning for
moving tumors in the lung involves solving a single planning problem before the start of treatment
and using the resulting solution in all of the subsequent treatment sessions. In this paper, we develop
an adaptive robust optimization approach to IMRT treatment planning for lung cancer, where informa-
tion gathered in prior treatment sessions is used to update the uncertainty set and guide the reoptimiza-
tion of the treatment for the next session. Such an approach allows for the estimate of the uncertain effect
to improve as the treatment goes on and represents a generalization of existing robust optimization and
adaptive radiation therapy methodologies. Our method is computationally tractable, as it involves solv-
ing a sequence of linear optimization problems. We present computational results for a lung cancer
patient case and show that using our adaptive robust method, it is possible to attain an improvement
over the traditional robust approach in both tumor coverage and organ sparing simultaneously. We also
prove that under certain conditions our adaptive robust method is asymptotically optimal, which pro-
vides insight into the performance observed in our computational study. The essence of our method –
solving a sequence of single-stage robust optimization problems, with the uncertainty set updated each
time – can potentially be applied to other problems that involve multi-stage decisions to be made under
uncertainty.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lung cancer is the leading cause of death due to cancer in North
America, killing an estimated 180,000 people in 2010 (American
Cancer Society, 2010; Canadian Cancer Society’s Steering Commit-
tee, 2010) and accounting for over 25% of all cancer deaths. Lung
cancer is often treated using radiation therapy (Toschi, Cappuzzo,
& Janne, 2007). Of the different types of radiation therapy, one of
the most commonly used in practice for treating cancer in general
is intensity-modulated radiation therapy (IMRT) (Mell, Mehrotra, &
Mundt, 2005). In an IMRT treatment, the patient is irradiated from
multiple beams, each of which is decomposed into a large number
of small beamlets. The beamlet intensities can be controlled
through the use of a multileaf collimator (MLC) that moves metal
leaves in and out of the beam field in order to block certain parts
of the beam. By appropriately setting the beamlet intensities, the
volume that is irradiated can be made to closely conform to the
shape of the target. The basic problem in planning an IMRT treat-
ment is to determine how the beamlet intensities or weights
should be set so that the target receives an adequate dose while

the healthy tissue receives a minimal dose. This is known as the
beamlet weight optimization problem or the fluence map optimi-
zation problem. Since the inception of IMRT, much research has fo-
cused on modeling and solving this problem as a mathematical
program (see Romeijn & Dempsey, 2008 for a comprehensive
overview).

In practice, the beamlet weight optimization problem is compli-
cated by the presence of uncertainties, such as those arising from
errors in beam positioning and patient placement, internal organ
motion during treatment, and changes in organ position between
treatment sessions. All of these factors affect the relative position
of the tumor with respect to the beams, which in turn affects
how much dose is deposited in the tumor and the healthy tissue.
For tumors in the lung, the most significant uncertainty arises from
breathing motion. During treatment, the patient is constantly
breathing, and the tumor moves with the expansion and contrac-
tion of the patient’s lungs. Furthermore, the patient’s breathing
pattern during treatment is not known exactly beforehand and
can vary from day to day. If a treatment is planned with a specific
breathing pattern in mind but a different pattern is realized during
treatment, the tumor may end up being underdosed and the qual-
ity of the treatment may thus be greatly compromised (Lujan, Balt-
er, & Ten Haken, 2003; Sheng et al., 2006). At the same time, if the
treatment is designed to deliver the prescription dose to the tumor
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