Optimal Location-Allocation of TCSC Devices on a Transmission Network

O. Ziaee, Student Member, IEEE, F. Choobineh, Member, IEEE

Abstract—Installing a thyristor controlled series capacitor (TCSC) device on a transmission network reduces network congestion and generation cost. We formulate the TCSC locationallocation problem as a mixed integer nonlinear program, and propose a novel decomposition procedure for determining the optimal location of TCSCs and their respective size for a network. The load uncertainty, AC characteristic of transmission lines, and nonlinear cost of TCSCs explicitly are considered. The results of applying the procedure to the IEEE 118-bus test system are reported, and insights into the TCSC location-allocation problem are provided.

Index Terms—Transmission network, TCSC locationallocation, Benders' decomposition, reactive power balance.

NOMENCLATURE

1) Sets and Indices:

- Ω_M Set of all buses (nodes).
- m, n Bus (node) index. n is an alias of m.
- N_b Number of buses ($|\Omega_M| = N_b$).
- Ω_L Set of all transmission lines.
- $\Omega_{L_{mn}}$ Set of transmission lines connecting buses m and n.
- *l* Transmission line index.
- N_l Number of transmission lines ($|\Omega_L| = N_l$).
- Ω_K Set of all generators.
- Ω_{K_m} Set of all generators located at bus m.
- *k* Generator index.
- N_k Number of generators ($|\Omega_K| = N_k$).
- Ω_D Set of all demands.
- Ω_{D_m} Set of all demands located at bus m.
- d Demand index.
- Ω_S Set of all scenarios.
- ω Scenario index.
- 2) Variables:
- θ_m Voltage angle at bus m.
- v_m Voltage magnitude at bus m.
- p_k , q_k Active and reactive power supplied by generator k.
- $\Delta_k^{p^+}$, $\Delta_k^{p^-}$ Non-negative slack variables pertaining to active power of generator k in the sub-program.
- $\Delta_k^{q^+}$, $\Delta_k^{q^-}$ Non-negative slack variables pertaining to reactive power of generator k in the sub-program.

O. Ziaee and F. Choobineh are with the Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 68588 Lincoln, NE, USA e-mail: (omid.ziaee@huskers.unl.edu; fchoobineh@nebraska.edu).

- $\Delta_m^{v^+}, \Delta_m^{v^-}$ Non-negative slack variables pertaining to voltage of bus m in the sub-program.
- λ_{mnl} , γ_{mnl} compensation level of susceptance and reactance of transmission line *l* connected to buses *m* and *n*.
- u_{mnl} Binary variable denoting the placement of TCSC on line l between buses m and n.
- μ_l , α_k Dual variables attained in sub-program.
- Φ^{TCSC} Cost of installed TCSCs in the system.
- π_{mnl}^{TCSC} Amortized cost of TCSC installed on line l connected to buses m and n.
- S_{mnl}^{TCSC} TCSC operating point in MVar (installed in line *l* between buses *m* and *n*).
- 3) Parameters:
- c_k Cost coefficient of generator k.
- p_d , q_d Active and reactive power demand.
- r_{mnl} Resistance of transmission line *l* connected to buses *m* and *n*.
- x_{mnl} Reactance of transmission line *l* connected to buses *m* and *n*.
- \vec{x}_{mnl} Reactance of transmission line l after compensation.
- p_k^{min} , p_k^{max} Lower and upper bound of active power supplied by generator k.
- q_k^{min} , q_k^{max} Lower and upper bound of reactive power supplied by generator k.
- $\theta_m^{min}, \theta_m^{max}$ Lower and upper bound of voltage angle at bus m.
- v_m^{min} , v_m^{max} Lower and upper bound of voltage magnitude at bus m.
- λ^{max} Maximum available compensation level.
- η Number of available TCSCs.
- s_{mnl}^{st} Stability limit of line *l* connected to buses *m* and *n*.
- s_{mnl}^{th} Thermal limit of line *l* connected to buses *m* and *n*.
- CRF The capital recovery factor.
- *ir* The interest rate percentage/year.
- *LT* The lifespan of TCSC device in years.
- φ_{ω} Load factor of scenario ω .
- ψ^v, ψ^q Penalty terms associated with voltage and reactive power slack variables, respectively.
- 4) Functions:
- $p_{mnl}(.)$ Active power flows from bus m to bus n through transmission line l.
- $q_{mnl}(.)$ Reactive power flows from bus m to bus n through transmission line l.
- $s_{mnl}(.)$ Apparent power flows from bus m to bus n through transmission line l

mission line l.