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a b s t r a c t

Growth factor therapy is a promising approach for chronic diabetic wounds, but strategies to efficiently
and cost-effectively deliver active molecules to the highly proteolytic wound environment remain as
major obstacles. Here, we re-engineered keratinocyte growth factor (KGF) and the cellular protective
peptide ARA290 into a protein polymer suspension with the purpose of increasing their proteolytic
resistance, thus their activity in vivo. KGF and ARA290 were fused with elastin-like peptide (ELP), a
protein polymer derived from tropoelastin, that confers the ability to separate into a colloidal suspension
of liquid-like coacervates. ELP fusion did not diminish peptides activities as demonstrated by ability of
KGF-ELP to accelerate keratinocyte proliferation and migration, and ARA290-ELP to protect cells from
apoptosis. We examined the healing effect of ARA290-ELP and KGF-ELP alone or in combination, in a full-
thickness diabetic wound model. In this model, ARA290-ELP was found to accelerate healing, notably by
increasing angiogenesis in the wound bed. We further showed that co-delivery of ARA290 and KGF, with
the 1:4 KGF-ELP to ARA290-ELP ratio, was the most effective wound treatment with the fastest healing
rate, the thicker granulation tissue and regenerated epidermis after 28 days. Overall, this study shows
that ARA290-ELP and KGF-ELP constitute promising new therapeutics for treatment of chronic wounds.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The number of patients with diabetes is rapidly increasing
around the world with an estimated 439 million adults affected by
2030 [1]. Around 25% of this population can be expected to develop
diabetic ulcers, which could lead to amputation due to progression
of the disease for more than 14% of these patients. Annual chronic
wound management costs exceed $20 billion in the United States
alone [2] and already severely burden the US healthcare system [3].
Clinical practice guidelines recommend the treatment of diabetic
foot ulcers with surgical debridement, infection control, redistri-
bution of pressure off the wound, and a selection of dressings that
allow for amoist wound environment and control excess exudation

[4]. Despite good wound care, non-healing ulcers remain a leading
cause of non-traumatic amputation in the US [5] with an increased
incidence of death among these patients [6], highlighting the need
for new viable treatments.

The wound healing response is a complex and dynamic process
that relies on a coordinated effort from different cell types along
with protein and chemical mediators to restore skin function. The
healing process is divided into several overlapping, interdependent
phases: hemostasis, inflammation, cell proliferation, migration,
angiogenesis, reepithelialization and remodeling of the extracel-
lular matrix [7]. Hyperglycemia caused by diabetes often interferes
with the initiation, regulation, and/or termination of the healing
stages leading to an impaired wound healing response. Diabetic
ulcers are non-healing wounds characterized by a chronically
inflamed wound bed due to numerous factors including neuropa-
thy, improper oxygenation, insufficient vascular supply to the ex-
tremities, and bacterial infection [4].

Growth factors and cytokines are essential in the organization of
the molecular processes involved in making cutaneous wound
healing efficient [8]. Specifically, growth factors have been shown
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