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a  b  s  t  r  a  c  t

Optimization  in  dynamic  environment  is  considered  among  prominent  optimization  problems.  There are
particular  challenges  for  optimization  in dynamic  environments,  so  that  the  designed  algorithms  must
conquer  the  challenges  in order  to perform  an  efficient  optimization.  In this  paper,  a novel  optimization
algorithm  in  dynamic  environments  was  proposed  based  on particle  swarm  optimization  approach,  in
which  several  mechanisms  were  employed  to  face the  challenges  in this  domain.  In this  algorithm,  an
improved  multi-swarm  approach  has  been  used  for finding  peaks  in  the  problem  space  and  tracking
them  after  an  environment  change  in an  appropriate  time.  Moreover,  a novel  method  based  on  change
in velocity  vector  and  particle  positions  was  proposed  to increase  the  diversity  of  swarms.  For  improv-
ing  the  efficiency  of  the  algorithm,  a local  search  based  on adaptive  exploiter  particle  around  the  best
found  position  as well  as  a  novel  awakening–sleeping  mechanism  were  utilized.  The  experiments  were
conducted  on  Moving  Peak  Benchmark  which  is  the  most  well-known  benchmark  in  this  domain  and
results  have  been  compared  with  those  of  the  state-of-the  art methods.  The  results  show  the  superiority
of  the proposed  method.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimization is considered among the most important problems
in mathematics and sciences. The importance of optimization and
its numerous applications has inspired the scientists to investigate
on different aspects of it. Optimization problems could be seen in
real-world applications, e.g. itinerary selection. The goal in all opti-
mization problems is to maximize or minimize one or more cost
functions in a problem considering its limitations. While there are
a limited number of limitations in a problem space, it can be solved
easily. However, increasing limitations leads to an NP-hard prob-
lem which needs a high computational cost to be solved. Therefore,
researchers are continually seeking the efficient ways for solving
such NP-hard problems. Meta-heuristic methods are among these
techniques.

Meta-heuristic methods present a computing method for solv-
ing optimization problems in which an iterative process for
enhancing the obtained solution is utilized until a terminating
state is reached. Until now, most existing meta-heuristic methods
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have focused on static problems. In such problems, the problem
space remains unchanged during the optimization process. How-
ever, most optimization problems in real world are dynamic and
non-deterministic, i.e. the problem search space changes during the
optimization process. For example, scheduling tasks is a problem
usually solved as a static optimization problem. However, by arriv-
ing of a new task during the scheduling procedure, or occurrence of
some other problems such as failures in resources, the search envi-
ronment is changed from a static problem into a dynamic one. As
a result, the previous static solutions may  no longer be applicable
on the new environment. Such problems are called dynamic state
optimization problems.

In static optimization problems, finding a global optimum is
considered as the main goal. On the other hand, finding a global
optimum is not the only goal in dynamic environments and track-
ing the optimum in the problem space is extremely important in
this domain. In fact, the proposed methods for optimization in static
environments fail to appropriately follow the optimum. Thus, such
methods are not suitable to be used in dynamic environments and
the necessity of finding different techniques involving different
goal functions and different evaluation criteria for optimization in
dynamic environments is obvious.

In this paper, a new optimization method based on PSO has
been proposed, by presenting a set of consistency techniques with
the problem space for optimization in dynamic environments. To
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